مشروع BlenderBot من “ميتا” مثال على أهمية الاعتمادية والأمن لتقنيات الذكاء الاصطناعي
AI بالعربي – متابعات
يحتلّ مشروع “ميتا” البحثي المسمّى Blenderbot عناوين بارزة في الأخبار منذ إطلاقه في أوائل أغسطس الجاري، وهو مشروع بحثي قائم على الذكاء الاصطناعي، ويتألف من “روبوت للمحادثة” تبدو تصريحاته في شؤون الأفراد والمؤسسات والسياسات مفاجئة أحيانًا أو ذات صبغة متطرفة في أحيان أخرى.
يعكس المشروع صورة التحدّيات التي تصطدم بها تقنيات تعلّم الآلات في رحلة تطورّها، لذا ينبغي للمؤسسات التي تستخدم هذه التقنيات في أعمالها التجارية أن تتصدّى لتلك التحديات.
واجهت مشاريع أخرى مماثلة في السابق المشكلة نفسها التي واجهتها “ميتا”، الشركة الأم لـ “فيس بوك”، في مشروعها Blenderbot، مثل تطبيق الدردشة Tay الذي طورته مايكروسوفت لصالح “تويتر”، والذي انتهى به الأمر إلى الإدلاء ببيانات عنصرية.
ويعكس هذا التحدّي التفاصيل الخاصة بالنماذج المولِّدة للمحتوى والقائمة على تقنيات تعلّم الآلات التي يجري تدريبها على النصوص والصور من الإنترنت. وتستخدم هذه النماذج مجموعات ضخمة من البيانات الخام لجعل مخرجاتها من المحتوى مقنِعة للجمهور، ولكن يصعب منع هذه النماذج من التقاط التحيّزات الكامنة في البيانات إذا كانت تُدرّب على الويب.
وتشتمل أغلب هذه المشاريع حاليًا على أهداف بحثية وعلمية. لكن المؤسسات تستخدم أيضًا نماذج لغوية في المجالات التطبيقية، كدعم العملاء والترجمة وكتابة المحتوى النصيّ للمواد التسويقية وتدقيق النصوص، وما إلى ذلك. ويمكن للمطوّرين تنسيق مجموعات البيانات المستخدمة في تدريب تلك النماذج القائمة على تعلّم الآلات، لجعلها أقلّ تحيزًا، إلّا أن الأمر يظلّ صعبًا في حالة مجموعات البيانات الواسعة المتاحة على نطاق الويب. وتتمثل إحدى الطرق المتّبعة لمنع الأخطاء المحرجة في فلترة البيانات بحثًا عن التحيّزات، كاستخدام كلمات أو عبارات محدّدة لإزالة مستندات معنية ومنع النموذج من التعلّم منها. وهناك طريقة أخرى تتمثل في فلترة النصوص غير الملائمة الصادرة عن النموذج، والتي قد تكون مثار جدل، وذلك قبل وصولها إلى المستخدمين.